
USA2012

Protocol-Level Evasion of
Web Application Firewalls

Ivan Ristic
Director of Engineering

True Evasion Story

BLACK HAT USA 20121

Once, a long time ago, I evaded a web application
firewall by adding a single character to a valid
request. Can you spot it below?
GET /myapp/admin.php?userid=1001 HTTP/1.1
Host: www.example.com.
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:13.0)
Gecko/20100101 Firefox/13.0.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Connection: keep-alive

GET /myapp/admin.php?userid=1001 HTTP/1.1
Host: www.example.com.
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:13.0)
Gecko/20100101 Firefox/13.0.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Connection: keep-alive

BLACK HAT USA 20122

Once, a long time ago, I evaded a web application
firewall by adding a single character to a valid
request. Can you spot it below?

True Evasion Story

Why Do I Care?

 Spent years developing WAFs and
related software:
− Built ModSecurity (2002-2009)
− Built libhtp (2009-2010)
− Now working on IronBee

(not coding, though)

WAF concepts are powerful, but the
field needs more research and the
market needs more transparency

BLACK HAT USA 20123

libhtp

INTRODUCTION TO
PROTOCOL-LEVEL
EVASION

Protocol-Level Evasion of Web Application Firewalls BLACK HAT USA 2012

Impedance Mismatch

 Impedance mismatch, in the context of security
monitoring, refers to the problem of different
interpretations of the same data stream
− The security tool sees one thing
− The backend server sees another

 Possible causes:
− Ambiguous standards
− Partial and “Works for me” backend implementations
− “Helpful” developer mentality
− Insufficient attention by security product developers

BLACK HAT USA 20125

Protocol-Level Evasion Overview

 HTTP
− Message parsing
− Request line
− Request headers
− Cookies

 Hostname
 Path
 Parameters
 Request body

− Urlencoded
− Multipart

BLACK HAT USA 20126

Request body

PathMethod Protocol

Header name Header value

Header value

Header name Header value

Header name Header value

SP

Query string

Protocol-Level Evasion Overview

 HTTP
− Message parsing
− Request line
− Request headers
− Cookies

 Hostname
 Path
 Parameters
 Request body

− Urlencoded
− Multipart

BLACK HAT USA 20127

Request body

PathMethod Protocol

Header name Header value

Header value

Header name Header value

Header name Header value

SP

Query string

Virtual Patching

 Virtual patching is probably the
most widely used WAF feature
1. You know you have a problem
2. You can’t resolve it, or can’t resolve it in a timely manner
3. You deploy a WAF as a short-term mitigation measure

 Challenge:
− To support the narrow focus of virtual patches, WAFs have to

make a lot of processing decisions
− The more decision points there are, the easier it is to

successfully evade detection

BLACK HAT USA 20128

PATH
EVASION

Protocol-Level Evasion of Web Application Firewalls BLACK HAT USA 2012

Attacking Patch Activation

 An application entry point might look like this:
/myapp/admin.php?userid=1001

 And the virtual patch, using Apache and
ModSecurity, like this:
<Location /myapp/admin.php>
Allow only numbers in userid
SecRule ARGS:userid "!^\d+$"

</Location>

BLACK HAT USA 2012

PATH_INFO and Path Parameters

 Surprisingly, some WAFs* still don’t
know about PATH_INFO:
/myapp/admin.php/xyz?userid=X

 If PATH_INFO is not supported by the
backend server, you might want to try
path parameters (e.g., works on Tomcat):
/myapp/admin.php;random=value?userid=X

(*) Neither approach works against Apache, because
it uses Location parameter as prefix.

BLACK HAT USA 2012

Self-Contained ModSecurity Rules

 Rules written like this are very easy to find:
SecRule REQUEST_FILENAME "@streq /myapp/admin.php“ \

"chain,phase:2,deny"
SecRule ARGS:userid "!^\d+$"

 Problems:
− The use of @streq misses PATH_INFO and path parameters attacks
− Apache may not handle all obfuscation attacks, for example:

/myapp//admin.php

/myapp/./admin.php

/myapp/xyz/../admin.php

BLACK HAT USA 2012

Self-Contained ModSecurity Rules

Here’s a better version of the same patch:
SecRule REQUEST_FILENAME \
"@beginsWith /myapp/admin.php" \

"chain,phase:2,t:normalizePath,deny"
SecRule ARGS:userid "!^\d+$“

 Improvements:
− Use @beginsWith (@contains is good, too)
− Use transformation function normalizePath

to counter path evasion attacks

BLACK HAT USA 2012

Backend Feature Variations

 In a proxy deployment, you have to watch for
impedance mismatch with various backend
features:
/myapp\admin.php

/myapp/AdMiN.php

Using Apache and ModSecurity:
<Location ~ (?i)^[\x5c/]+myapp[\x5c/]+admin\.php>

SecRule ARGS:userid "!^\d+$"
</Location>

BLACK HAT USA 2012

Backend Feature Variations

 In a proxy deployment, you have to watch for
impedance mismatch with various backend
features:
/myapp\admin.php

/myapp/AdMiN.php

ModSecurity only:
SecRule REQUEST_FILENAME \
"@beginsWith /myapp/admin.php" \

"chain,phase:2,t:lowercase,t:normalizePathWin,deny"
SecRule ARGS:userid "!^[0-9]+$"

BLACK HAT USA 2012

Path Parameters Again

 Path parameters are actually path segment
parameters, and can be used with any segment:
/myapp;param=value/admin.php?userid=X

 New patch version:
<Location ~ (?i)^[\x5c/]+myapp(;[^\x5c/]*)?
[\x5c/]+admin\.php(;[^\x5c/]*)?>

SecRule ARGS:userid "!^\d+$"
</Location>

 ModSecurity needs a new transformation function; could use the
same pattern as above or reject all path segment parameters

BLACK HAT USA 2012

Short Filenames on Windows

Windows uses short filenames to support
legacy applications. For example:
admin.aspx

becomes
ADMIN~1.ASP

 Ideal for virtual patch evasion under
right circumstances:
− Does not work with IIS
− But does work with Apache running on Windows

BLACK HAT USA 2012

Path Evasion against IIS 5.1

 IIS 5.1 (and, presumably, earlier) are very
flexible when it comes to path processing:

1. Overlong 2- or 3-byte UTF-8 representing either / or \
2. In fact, any overlong UTF-8 character facilitates evasion
3. Best-fit mapping of UTF-8 characters; for example U+0107 becomes c
4. Best-fit mapping of %u-encoded characters
5. Full-width mapping with UTF-8 encoded characters; for example U+FF0F becomes /
6. Full-width mapping of %u encoding
7. Terminate path using an encoded NUL byte (%00)

 IIS 5.1 and IIS 6 accept %u-encoded slashes

BLACK HAT USA 2012

Path Handling of Major Platforms

BLACK HAT USA 2012

Path Handling of Major Platforms

BLACK HAT USA 2012

42
TESTS

PARAMETER
EVASION

Protocol-Level Evasion of Web Application Firewalls BLACK HAT USA 2012

Parameter Cardinality and Case

 In the simplest case, supplying multiple parameters or
varying the case of parameter names may work:
/myapp/admin.php?userid=1&userid=2

/myapp/admin.php?uSeRiD=1&userid=2

However, these techniques are more likely to work
against custom-coded defenses; WAFs will have
caught up by now.

BLACK HAT USA 2012

PHP’s Cookies as Parameters

 PHP can be configured to treat cookies as parameters,
and place them in the $_REQUEST array:
GET /myapp/admin.php
Cookie: userid=X

 This is still the default behaviour in the code, with an
override in the default php.ini (which can easily be
misconfigured).

BLACK HAT USA 2012

HTTP Parameter Pollution

Depending on the backend and the code used, the WAF
may not know exactly that the application sees:
/myapp/admin.php?userid=1&userid=2

BLACK HAT USA 2012

Technology Behaviour Result

ASP Concatenate userid=1,2

PHP Last occurrence userid=2

Java First occurrence userid=1

A better overview is available in
the HTTP Parameter Pollution slides.

Tricks with PHP Parameter
Names
 PHP will change parameter names when they

contain some characters it does not like:
− Whitespace at the beginning is removed
− Whitespace, dot, and open bracket characters

in the middle converted to underscores

/myapp/admin.php?+userid=X

BLACK HAT USA 2012

Invalid URL Encoding

Different platforms react differently to invalid encoding.
 ASP removes a % character that is not

followed by 2 hexadecimal digits:
/myapp/admin.php?user%id=X

 In the old days, many C-based applications had incorrect
decoding routines, which lacked error detection.
/myapp/admin.php?user%}9d=X

/myapp/admin.php?user%69d=X

BLACK HAT USA 2012

Content Type Evasion

When parameters are transported in request body, you
can attack the encoding detection mechanism
− Attack applications that hard-code processing:

 Omit the Content-Type request header
 Place an arbitrary value in it
 Use multipart/form-data, and craft the request body to be a valid

multipart payload (the app will still parse as Urlencoded)

− Attack apps with lax content type detection:
 For example, Apache Commons FileUpload accepts any MIME

type that begins with multipart/ as multipart/form-data

− Use less common formats, such as JSON
− Use a different transport, for example WebSockets

BLACK HAT USA 2012

ModSecurity Bypass

 By default, ModSecurity ignores unknown MIME types
− With Apache Commons FileUpload, send a request

body with multipart/whatever MIME type
− Request bodies using encodings other than

Urlencoded and Multipart are completely ignored

 Possible improvements to ModSecurity:
− Fail closed upon detecting unknown MIME type
− Inspect all request bodies as a stream of bytes

BLACK HAT USA 2012

MULTIPART
EVASION

Protocol-Level Evasion of Web Application Firewalls BLACK HAT USA 2012

Multipart Format Overview
POST / HTTP/1.0
Content-Type: multipart/form-data; boundary=0000
Host: www.example.com
Content-Length: 10269

--0000
Content-Disposition: form-data; name="name"

John Smith
--0000
Content-Disposition: form-data; name="email"

john.smith@example.com
--0000
Content-Disposition: form-data; name="image"; filename="image.jpg"
Content-Type: image/jpeg

FILE CONTENTS REMOVED
--0000--

BLACK HAT USA 2012

2

3

1

5

4

Apache Commons FileUpload

Define constant for later use:
public static final String

MULTIPART = "multipart/";

Determine if Multipart request body is present:
if (contentType.toLowerCase().

startsWith(MULTIPART)) {
return true;

}
BLACK HAT USA 201231

ModSecurity CRS Bypass

ModSecurity Core Rules will attempt to restrict
MIME types, but not always successfully:
− With Apache Commons FileUpload, send a

request body with multipart/ MIME type.
− Reported as fixed in CRS 2.2.5.

 The flaw was in this rule, where the
check was not strict enough:
SecRule REQUEST_CONTENT_TYPE "!@within \

application/x-www-form-urlencoded \
multipart/form-data"

BLACK HAT USA 2012

Content-Type Evasion

 Trick the WAF into not seeing a Multipart request body
 Examples:
Content-Type: multipart/form-data ; boundary=0000
Content-Type: mUltiPart/ForM-dATa; boundary=0000
Content-Type: multipart/form-dataX; boundary=0000
Content-Type: multipart/form-data, boundary=0000
Content-Type: multipart/form-data boundary=0000
Content-Type: multipart/whatever; boundary=0000
Content-Type: multipart/; boundary=0000

BLACK HAT USA 201233

ModSecurity with Apache Commons FileUpload bypass

PHP Source Code

boundary = strstr(content_type, "boundary");
if (!boundary) {

/* Lowercase header and try again */
}

if (!boundary ||
!(boundary = strchr(boundary, '='))) {
/* Return with error */

}

BLACK HAT USA 201234

1

2

3

Boundary Evasion

 Trick the WAF into seeing a different boundary
 Examples:

Content-Type: multipart/form-data;
boundary =0000; boundary=1111

Content-Type: multipart/form-data;
boundaryX=0000; boundary=1111

Content-Type: multipart/form-data;
boundary=0000; boundary=1111

Content-Type: multipart/form-data;
boundary=0000; BOUNDARY=1111

Content-Type: multipart/form-data;
boundary=0000'1111

BLACK HAT USA 201235

Reported by
Stefan Esser in
2009 to have
worked against F5

Part Evasion

 Boundary evasion leads to part evasion, but even when
you get the boundary right you can still miss things
 In 2009, Stefan Esser reported that PHP continues to

process the parts that appear after the “last” part

BLACK HAT USA 201236

--0000
Content-Disposition: form-data; name="name"

John Smith
--0000--
Content-Disposition: form-data; name=“name"

ATTACK
--0000

Parameter Name Evasion

 Focuses on differences in parameter name parsing.
 Example attacks:

Content-Disposition: form-data; name="n1"; name="n2"
Content-Disposition: form-data; name="n1"; name ="n2"

How PHP parses parameter names:
Content-Disposition: form-data; name="n1"; name="n2"
Content-Disposition: form-data; name="n1"; name ="n2"

BLACK HAT USA 201237

Parameter Type Evasion

BLACK HAT USA 201238

WAFs may treat files differently. For example:
− ModSecurity has different inspection controls for files
− No file inspection in the CRS

 ModSecurity bypass reported by Stefan Esser in 2009
− Thought to have been fixed (I was not involved)
− Stefan’s original payload below

Content-Disposition: form-data;
name=';filename="';name=payload;"

Parameter Type Evasion

This is what ModSecurity saw:
Content-Disposition: form-data;
name=';filename="';name=payload;"

This is what PHP sees:
Content-Disposition: form-data;
name=';filename="';name=payload;"

BLACK HAT USA 201239

name filename

namename (ignored)

Parameter Type Evasion

 Flaw thought to have been fixed
 I rediscovered the problem during my evasion research

 The original problem had been
misunderstood and addressed incorrectly:
 ModSecurity added support for single

quotes in parameter values
 PHP supports single-quote escaping

anywhere within the C-D header

New ModSecurity bypass* with only 1 extra character:
Content-Disposition: form-data;
name=x';filename="';name=payload;"

BLACK HAT USA 201240

(*) Reported to have been addressed in ModSecurity 2.6.6

Multipart Evasion Summary

 Complex and vaguely specified format
 Implementations are often:
− Quick & dirty (whatever works)
− Focused on real-life use cases (not the specification)

 Rife opportunities for evasion
 There are 37 tests available in the

repository
− Tested against ModSecurity and PHP
− Testing of the major platforms

will follow soon
BLACK HAT USA 201241

37
TESTS

WHAT
NEXT?

Protocol-Level Evasion of Web Application Firewalls BLACK HAT USA 2012

Future Work

 At this time:
− Path handling has good coverage (tests + results)
− Parameter handling and multipart test cases in good shape

 Need to test major platforms

 Future activity
− Complete other areas of protocol-level evasion

 HTTP parsing
 Character set issues
 Hostname evasion

− Document all techniques in the Evasion Techniques Catalogue

BLACK HAT USA 2012

Where to Go From Here

More information in the
accompanying whitepaper
Get the tools and docs from GitHub:

https://github.com/ironbee/waf-research
− Path handling research
− Baseline, path, and multipart test cases

 Test your security products
 Contribute your results

BLACK HAT USA 201244

>100
TESTS

USA2012

Ivan Ristic
iristic@qualys.com
Twitter: @ivanristic

Thank You

How to Write a Good Virtual Patch

 Take these steps to write a good virtual patch:
1. Study the problem, ideally by reading source code

 If the source code is not available, do what you can by analyzing the
advisory, the exploit, and by attacking the application

2. Use a path that can withstand evasion attempts
3. Enumerate all parameters
4. For each parameter

1. Determine how many times it can appear in request
2. Determine what it is allowed to contain

5. Reject requests with unknown parameters
Outside the patch, enforce strict configuration

that does not allow requests with anomalies
BLACK HAT USA 201246

Baseline Tests

 In the repository, there is a set of baseline tests designed
to determine if all parts of a HTTP requests are inspected
by a WAF
 Instructions:

1. Find one payload that is blocked by the WAF
2. Submit payload in every different logical location
3. Determine locations that are

not monitored
4. Seek ways to exploit the

application in that way

BLACK HAT USA 201247

22
TESTS

Why Should You Care?
 Researchers:

− Fascinating new data, and effort to systematically and
collaboratively analyse how WAFs perform in this area

 Testers (breakers):
− Lots of practical assessment techniques

 Defenders:
− Lots of practical information about Apache and ModSecurity
− A better picture of the true state of your defences

(and an opportunity to tell your vendor how much you care)

 Vendors:
− Good reason to allocate more funds to the core functionality

of your WAF, leading to a better product

BLACK HAT USA 201248

Donald Knuth on Email

“Email is a wonderful thing for
people whose role in life is to
be on top of things. But not for
me; my role is to be on the
bottom of things.”

BLACK HAT USA 201249

Previous Work

 A look at whisker’s anti-IDS tactics
Rain Forest Puppy (1999)

 Bypassing Content Filtering Software
3APA3A (2002)

HTTP IDS Evasions Revisited
Daniel J. Roelker (2003)

 Snort's README.http_inspect
Sourcefire et al (2005)

 Shocking News in PHP Exploitation
Stefan Esser (2009)

HTTP Parameter Pollution
Luca Carettoni and Stefano di Paola (2009)

BLACK HAT USA 201250

About Ivan Ristic
Ivan is a compulsive developer,
application security researcher, writer,
publisher, and entrepreneur.

 Apache Security,
O’Reilly (2005)

 ModSecurity, open source
web application firewall

 SSL Labs, SSL/TLS,
and PKI research

 ModSecurity Handbook,
Feisty Duck (2010)

 IronBee, a next-generation open
source web application firewall

51

